Article: The science of acoustic panels explained

Good acoustics are not a luxury, but a prerequisite for well-being, focus, and productivity.
From open-plan offices to modern homes with concrete, glass, and steel, most contemporary spaces are designed with aesthetics in mind but without considering how sound behaves. The result is noise that lingers, speech that becomes unclear, and a soundscape that causes stress rather than comfort – as discussed in our feature on decorative soundproofing panel ideas.
At Arturel, we believe that the conversation about acoustics deserves a scientific foundation. That means going beyond surface-level claims and instead explaining the physics of how sound waves interact with materials, how energy is transformed when waves hit porous structures, and why different frequencies demand different approaches.
Acoustic panels work by turning sound energy into heat through microscopic friction inside the material.
When a sound wave travels through air, it behaves as a pressure fluctuation. Upon reaching a surface, three things can happen:
-
1. Reflection – Part of the wave bounces back into the room. This causes echoes and reverberation, which shape how long sound lingers in a space.
2. Transmission – Part of the wave passes through the material. This is the pathway for noise traveling between rooms or floors.
3. Absorption – Part of the wave enters the material and loses energy. In porous or fibrous structures, this energy is converted into heat through microscopic friction, reducing the overall sound level.
-
Absorption occurs when the pressure wave enters a porous or fibrous structure. As air particles are forced through the small gaps between fibers, their kinetic energy is transformed into heat by viscous friction. A process too small to be felt as warmth, but powerful enough to reduce the strength of the sound.
The efficiency of absorption depends strongly on the relationship between frequency and material thickness. Low-frequency sound waves have long wavelengths and require thicker or denser structures to be effectively dampened, while high frequencies with short wavelengths can be absorbed by thinner materials. This is why an acoustic panel that performs well in the speech range of 500–2000 Hz might need additional thickness to tackle the rumble of ventilation systems or bass-heavy environments.
Research on natural fibre composites confirms this principle. Studies show that fibres such as kenaf, hemp, and wool have excellent porosity and tortuosity, making them effective at dissipating sound energy while remaining lightweight and sustainable. Their fibrous network structure mimics what engineers also achieve with advanced synthetic materials:
A labyrinth that forces sound waves to lose energy as they travel through.
At Arturel, we apply the same principles but combine them with circular design. Our Kvadrat series, for example, is made from upcycled textile waste – giving discarded wool a second life as a highly effective absorber. By engineering fibre density and thickness, we ensure that each panel not only performs acoustically but also tells a story of material innovation. The same tangled fibre structures that make textiles soft and flexible also make them highly efficient at reducing reverberation.
In essence, acoustic panels are not passive decorations. They are precisely engineered systems that balance material choice, thickness, and fibre architecture to shape how sound behaves in a room.
Noise Reduction Coefficient (NRC) is a single-number rating that describes how effectively a material absorbs sound, expressed on a scale from 0.0 to 1.0.
An NRC of 0.0 means no absorption (the panel reflects all sound), while an NRC of 1.0 means total absorption. In practice, most acoustic materials fall between 0.3 and 0.95, depending on their composition and thickness. This rating is especially useful for designers and architects because it condenses complex frequency data into a simple number that can guide material selection.
The NRC value is determined through standardized laboratory tests across the frequency range of 250–2000 Hz, as described in acoustic testing standards. This range covers the majority of human speech and everyday noise. The result is an average absorption coefficient across these bands. For example, if a panel is rated NRC 0.85, it means the surface absorbs around 85% of the incident sound energy within that range – dramatically reducing reverberation and improving clarity.
However, one limitation of NRC is that it provides only a single average, while real-world performance often varies across frequencies. Two materials can both have NRC 0.80 but behave very differently. One might absorb low frequencies poorly but excel at high frequencies, while another has a more balanced profile. That distinction can be critical when designing offices, restaurants, or performance spaces where different types of noise dominate.
I accept the terms and conditions